"Enter"a basıp içeriğe geçin

Drosophila Melanogaster As A Model For Diabetes

Loading

Diyabet Modeli Olarak Drosophila Melanogaster

Yazarlar: Begum COSAR1

Corresponding author
1Begum COSAR, Başkent University Faculty of Science and Letters Program of Molecular Biology and Genetics, Etimesgut, Ankara, Türkiye
E-mail: cosarbegum@gmail.com

ABSTRACT

Diabetes is a serious global concern, affecting a huge proportion of the world’s population. Recently, scientists have used D. melanogaster as a model organism for metabolic diseases such as type 2 diabetes, type 1 diabetes and obesity to study insulin signaling and metabolic pathways. The insulin pathway and glucose control of sugar metabolism human and D. melanogaster have been found to be preserved despite the physiological differences. Therefore, D. melanogaster is an optimal model for establishing a new perspective to human metabolic diseases. D. melanogaster is a more advantageous model organism compared to other invertebrate animal models due to its 75% similarity to the mammalian genome in modeling diseases seen in humans diseases. D. melanogaster diabetic disease models will help identify pathways associated with insulin resistance and the absence of additional genes related to type 2 diabetes in the future. In the near future, the high gene similarity between D. melanogaster and the mammal and the convenience of D. melanogaster in the laboratory will allow an understanding of the mechanisms underlying various metabolic diseases. In this study, recent reports which show how D. melanogaster can be one of the best model organisms for diabetes modeling using different manipulation methods have been compiled to better address the utility of the D. melanogaster type 2 diabetes model in medical research.

Keywords: Diabetes, Drosophila melanogaster, high fat diet, high sugar diet, mutation, model organism.

ÖZET

Diyabet, dünya nüfusunun büyük bir bölümünü etkileyen ciddi bir küresel sorundur. Son zamanlarda, bilim adamları D. melanogaster‘i insülin sinyalini ve metabolik yolları incelemek için tip 2 diyabet, tip 1 diyabet ve obezite gibi metabolik hastalıklar için model organizma olarak kullanmışlardır. İnsan şeker metabolizması ve D. melanogasterin insülin yolu ve glikoz kontrolünün fizyolojik farklılıklara rağmen korunduğu bulunmuştur. Bu nedenle, D. melanogaster, insan metabolik hastalıklarına yeni bir bakış açısı oluşturmak için optimal bir modeldir. D. melanogaster, insanlarda görülen hastalıkları modellemede memeli genomuna %75 benzerliği nedeniyle diğer omurgasız hayvan modellerine kıyasla daha avantajlı bir model organizmadır. D. melanogaster diyabetik hastalık modelleri, insülin direnci ile ilişkili yolları ve gelecekte tip 2 diyabet ile ilgili ek genleri belirlemeye yardımcı olacaktır. Yakın gelecekte, D. melanogaster ile memeli arasındaki yüksek gen benzerliği ve laboratuvarda D. melanogaster‘in kolay kullanımı, çeşitli metabolik hastalıkların altında yatan mekanizmaların anlaşılmasına olanak sağlayacaktır. Bu çalışmada, D. melanogaster‘in, farklı manipülasyon yöntemleri kullanarak diyabet modellemesi için en iyi model organizmalardan biri olabileceğini gösteren son raporlar, D. melanogaster tip 2 diyabet modelinin tıbbi araştırmalardaki faydasını daha iyi ele almak için derlenmiştir.

Anahtar Kelimeler: Diyabet, Drosophila melanogaster, yüksek yağ diyeti, yüksek şeker diyeti, mutasyon, model organizma.

How to Cite (APA 7)

Cosar B. (2021). Drosophila Melanogaster As A Model For Diabetes. Health Sciences Student Journal, 1(2), 46-58 https://healthssj.com/drosophila-melanogaster-as-a-model-for-diabetes/

REFERENCES/KAYNAKÇA

1. Tao, Z., Shi, A., & Zhao, J. (2015). Epidemiological Perspectives of Diabetes. Cell Biochemistry and Biophysics, 73(1), 181–185. https://doi.org/10.1007/s12013-015-0598-4

2. Herder, C., Nuotio, M. L., Shah, S., Blankenberg, S., Brunner, E. J., Carstensen, M., Gieger, C., Grallert, H., Jula, A., Kähönen, M., Kettunen, J., Kivimäki, M., Koenig, W., Kristiansson, K., Langenberg, C., Lehtimäki, T., Luotola, K., Marzi, C., Müller, C., … Salomaa, V. (2014). Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits. Diabetes, 63(12), 4343–4359. https://doi.org/10.2337/db14-0731

3. Baker, K. D., & Thummel, C. S. (2007). Diabetic Larvae and Obese Flies-Emerging Studies of Metabolism in Drosophila. In Cell Metabolism (Vol. 6, Issue 4, pp. 257–266). Cell Metab. https://doi.org/10.1016/j.cmet.2007.09.002

4. Rulifson, E. J., Kim, S. K., & Nusse, R. (2002). Ablation of insulin-producing neurons in files: Growth and diabetic phenotypes. Science, 296(5570), 1118–1120. https://doi.org/10.1126/science.1070058

5. Kim, S. K., & Rulifson, E. J. (2004). Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature, 431(7006), 316–320. https://doi.org/10.1038/nature02897

6. Cheng, L. Y., Parsons, L. M., & Richardson, H. E. (2013). Modelling Cancer in Drosophila : The Next Generation. In eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0020862.pub2

7. Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. In Nature Reviews Genetics (Vol. 6, Issue 1, pp. 9–23). Nature Publishing Group. https://doi.org/10.1038/nrg1503

8. Chien, S., Reiter, L. T., Bier, E., & Gribskov, M. (2002). Homophila: Human disease gene cognates in Drosophila. Nucleic Acids Research, 30(1), 149–151. https://doi.org/10.1093/nar/30.1.149

9. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6), 1114–1125. https://doi.org/10.1101/gr.169101

10. Bonini, N. M., & Fortini, M. E. (2002). Applications of the Drosophila retina to human disease modeling. In Results and problems in cell differentiation (Vol. 37, pp. 257–275). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45398-7_15

11. He, B. Z., Ludwig, M. Z., Dickerson, D. A., Barse, L., Arun, B., Vilhjálmsson, B. J., Jiang, P., Park, S. Y., Tamarina, N. A., Selleck, S. B., Wittkopp, P. J., Bell, G. I., & Kreitman, M. (2014). Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin. Genetics, 196(2), 557–567. https://doi.org/10.1534/genetics.113.157800

12. Lloyd, T. E., & Taylor, J. P. (2010). Flightless flies: Drosophila models of neuromuscular disease. In Annals of the New York Academy of Sciences (Vol. 1184). https://doi.org/10.1111/j.1749-6632.2010.05432.x

13. WIGGLESWORTH, V. B. (1949). The Utilization of Reserve Substances in Drosophila During Flight. Journal of Experimental Biology, 26(2).

14. Rusten, T. E., Lindmo, K., Juhász, G., Sass, M., Seglen, P. O., Brech, A., & Stenmark, H. (2004). Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K Pathway. Developmental Cell, 7(2), 179–192. https://doi.org/10.1016/j.devcel.2004.07.005

15. Scott, R. C., Schuldiner, O., & Neufeld, T. P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Developmental Cell, 7(2), 167–178. https://doi.org/10.1016/j.devcel.2004.07.009

16. Owusu-Ansah, E., & Perrimon, N. (2014). Modeling metabolic homeostasis and nutrient sensing in Drosophila: Implications for aging and metabolic diseases. In DMM Disease Models and Mechanisms (Vol. 7, Issue 3, pp. 343–350). Company of Biologists Ltd. https://doi.org/10.1242/dmm.012989

17. Canavoso, L. E., Jouni, Z. E., Karnas, K. J., Pennington, J. E., & Wells, M. A. (2001). FAT METABOLISM IN INSECTS. Annual Review of Nutrition, 21(1), 23–46. https://doi.org/10.1146/annurev.nutr.21.1.23

18. Gutierrez, E., Wiggins, D., Fielding, B., & Gould, A. P. (2007). Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature, 445(7125), 275–280. https://doi.org/10.1038/nature05382

19. Lee, G., & Park, J. H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1), 311–323. https://doi.org/10.1534/genetics.167.1.311

20. Rulifson, E. J., Kim, S. K., & Nusse, R. (2002). Ablation of insulin-producing neurons in files: Growth and diabetic phenotypes. Science, 296(5570), 1118–1120. https://doi.org/10.1126/science.1070058

21. Gilbert, L. I., Rybczynski, R., & Warren, J. T. (2002). Control and Biochemical Nature of the Ecdysteroidogenic Pathway. Annual Review of Entomology, 47(1), 883–916. https://doi.org/10.1146/annurev.ento.47.091201.145302

22. Pandey, U. B., & Nichols, C. D. (2011). Human disease models in drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63(2), 411–436. https://doi.org/10.1124/pr.110.003293

23. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M., & Edgar, B. A. (2002). Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell, 2(2), 239–249. https://doi.org/10.1016/S1534-5807(02)00117-X

24. Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., & Hafen, E. (2001). An evolutionarily conserved function of the drosophila insulin receptor and insulin-like peptides in growth control. Current Biology, 11(4), 213–221. https://doi.org/10.1016/S0960-9822(01)00068-9

25. Ikeya, T., Galic, M., Belawat, P., Nairz, K., & Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current Biology, 12(15), 1293–1300. https://doi.org/10.1016/S0960-9822(02)01043-6

26. Oldham, S., & Hafen, E. (2003). Insulin/IGF and target of rapamycin signaling: A TOR de force in growth control. In Trends in Cell Biology (Vol. 13, Issue 2, pp. 79–85). Elsevier Current Trends. https://doi.org/10.1016/S0962-8924(02)00042-9

27. Reis, T. (2016). Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan. PLOS ONE, 11(1), e0146758. https://doi.org/10.1371/journal.pone.0146758

28. Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., & Léopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell, 114(6), 739–749. https://doi.org/10.1016/S0092-8674(03)00713-X

29. Broughton, S. J., Piper, M. D. W., Ikeya, T., Bass, T. M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D. J., Leevers, S. J., & Partridge, L. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 3105–3110. https://doi.org/10.1073/pnas.0405775102

30. Gäde, G., & Auerswald, L. (2003). Mode of action of neuropeptides from the adipokinetic hormone family. General and Comparative Endocrinology, 132(1), 10–20. https://doi.org/10.1016/S0016-6480(03)00159-X

31. Isabel, G., Martin, J. R., Chidami, S., Veenstra, J. A., & Rosay, P. (2005). AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 288(2 57-2), 531–538. https://doi.org/10.1152/ajpregu.00158.2004

32. Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., & Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metabolism, 12(5), 533–544. https://doi.org/10.1016/j.cmet.2010.09.014

33. Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. DMM Disease Models and Mechanisms, 4(6), 842–849. https://doi.org/10.1242/dmm.007948

34. Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G., & Markow, T. A. (2011). Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. Journal of Nutrition, 141(6), 1127–1133. https://doi.org/10.3945/jn.111.138438

35. Matzkin, L. M., Johnson, S., Paight, C., & Markow, T. A. (2013). Preadult Parental Diet Affects Offspring Development and Metabolism in Drosophila melanogaster. PLoS ONE, 8(3), e59530. https://doi.org/10.1371/journal.pone.0059530

36. Álvarez-Rendón, J. P., Salceda, R., & Riesgo-Escovar, J. R. (2018). Drosophila melanogaster as a Model for Diabetes Type 2 Progression. In BioMed Research International (Vol. 2018). Hindawi Limited. https://doi.org/10.1155/2018/1417528

37. Ouwens, D. M., Boer, C., Fodor, M., De Galan, P., Heine, R. J., Maassen, J. A., & Diamant, M. (2005). Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia, 48(6), 1229–1237. https://doi.org/10.1007/s00125-005-1755-x

38. Van Gaal, L. F., Mertens, I. L., & De Block, C. E. (2006). Mechanisms linking obesity with cardiovascular disease. In Nature (Vol. 444, Issue 7121, pp. 875–880). Nature Publishing Group. https://doi.org/10.1038/nature05487

39. Pasco, M. Y., & Léopold, P. (2012). High sugar-induced insulin resistance in Drosophila relies on the Lipocalin Neural Lazarillo. PLoS ONE, 7(5), e36583. https://doi.org/10.1371/journal.pone.0036583

40. Böhni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B. F., Beckingham, K., & Hafen, E. (1999). Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell, 97(7), 865–875. https://doi.org/10.1016/S0092-8674(00)80799-0

41. Garofalo, R. S. (2002). Genetic analysis of insulin signaling in Drosophila. In Trends in Endocrinology and Metabolism (Vol. 13, Issue 4, pp. 156–162). Elsevier Inc. https://doi.org/10.1016/S1043-2760(01)00548-3

42. Murillo-Maldonado, J. M., Bou Zeineddine, F., Stock, R., Thackeray, J., & Riesgo-Escovar, J. R. (2011). Insulin receptor-mediated signaling via phospholipase C-γ regulates growth and differentiation in drosophila. PLoS ONE, 6(11). https://doi.org/10.1371/journal.pone.0028067

43. Teleman, A. A., Ratzenböck, I., & Oldham, S. (2012). Drosophila: A model for understanding obesity and diabetic complications. In Experimental and Clinical Endocrinology and Diabetes (Vol. 120, Issue 4, pp. 184–185). © J. A. Barth Verlag in Georg Thieme Verlag KG. https://doi.org/10.1055/s-0032-1304566

44. Alfa, R. W., & Kim, S. K. (2016). Using Drosophila to discover mechanisms underlying type 2 diabetes. In DMM Disease Models and Mechanisms (Vol. 9, Issue 4, pp. 365–376). Company of Biologists Ltd. https://doi.org/10.1242/dmm.023887

45. Lehmann, M. (2018). Endocrine and physiological regulation of neutral fat storage in Drosophila. In Molecular and Cellular Endocrinology (Vol. 461, pp. 165–177). Elsevier Ireland Ltd. https://doi.org/10.1016/j.mce.2017.09.008

46. Morris, S. N. S., Coogan, C., Chamseddin, K., Fernandez-Kim, S. O., Kolli, S., Keller, J. N., & Bauer, J. H. (2012). Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochimica et Biophysica Acta – Molecular Basis of Disease, 1822(8), 1230–1237. https://doi.org/10.1016/j.bbadis.2012.04.012

47. Bruce, K. D., Hoxha, S., Carvalho, G. B., Yamada, R., Wang, H. D., Karayan, P., He, S., Brummel, T., Kapahi, P., & Ja, W. W. (2013). High carbohydrate-low protein consumption maximizes Drosophila lifespan. Experimental Gerontology, 48(10), 1129–1135. https://doi.org/10.1016/j.exger.2013.02.003

48. Buch, S., Melcher, C., Bauer, M., Katzenberger, J., & Pankratz, M. J. (2008). Opposing Effects of Dietary Protein and Sugar Regulate a Transcriptional Target of Drosophila Insulin-like Peptide Signaling. Cell Metabolism, 7(4), 321–332. https://doi.org/10.1016/j.cmet.2008.02.012

49. Heinrichsen, E. T., Zhang, H., Robinson, J. E., Ngo, J., Diop, S., Bodmer, R., Joiner, W. J., Metallo, C. M., & Haddad, G. G. (2014). Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Molecular Metabolism, 3(1), 42–54. https://doi.org/10.1016/j.molmet.2013.10.003

50. Reed, L. K., Lee, K., Zhang, Z., Rashid, L., Poe, A., Hsieh, B., Deighton, N., Glassbrook, N., Bodmer, R., & Gibson, G. (2014). Systems genomics of metabolic phenotypes in wild-type Drosophila melanogaster. Genetics, 197(2), 781–783. https://doi.org/10.1534/genetics.114.163857

51. Hong, S. H., Kang, M., Lee, K. S., & Yu, K. (2016). High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression. Scientific Reports, 6(1), 30265. https://doi.org/10.1038/srep30265

52. Woodcock, K. J., Kierdorf, K., Pouchelon, C. A., Vivancos, V., Dionne, M. S., & Geissmann, F. (2015). Macrophage-Derived upd3 Cytokine Causes Impaired Glucose Homeostasis and Reduced Lifespan in Drosophila Fed a Lipid-Rich Diet. Immunity, 42(1), 133–144. https://doi.org/10.1016/j.immuni.2014.12.023

53. Lee, S., Bao, H., Ishikawa, Z., Wang, W., & Lim, H.-Y. (2017). Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila. PLOS Genetics, 13(1), e1006555. https://doi.org/10.1371/journal.pgen.1006555

54. Scha. (2003). Lipotoxicity: when tissues overeat. Current Opinion in Lipidology, 281–287. https://doi.org/10.1097/01.mol.0000073508.41685.7f

55. Unger, R. H. (2003). Minireview: Weapons of Lean Body Mass Destruction: The Role of Ectopic Lipids in the Metabolic Syndrome. In Endocrinology (Vol. 144, Issue 12, pp. 5159–5165). https://doi.org/10.1210/en.2003-0870

56. van Herpen, N. A., & Schrauwen-Hinderling, V. B. (2008). Lipid accumulation in non-adipose tissue and lipotoxicity. Physiology and Behavior, 94(2), 231–241. https://doi.org/10.1016/j.physbeh.2007.11.049

57. Buescher, J. L., Musselman, L. P., Wilson, C. A., Lang, T., Keleher, M., Baranski, T. J., & Duncan, J. G. (2013). Evidence for transgenerational metabolic programming in Drosophila. DMM Disease Models and Mechanisms, 6(5), 1123–1132. https://doi.org/10.1242/dmm.011924

58. Havula, E., Teesalu, M., Hyötyläinen, T., Seppälä, H., Hasygar, K., Auvinen, P., Orešič, M., Sandmann, T., & Hietakangas, V. (2013). Mondo/ChREBP-Mlx-Regulated Transcriptional Network Is Essential for Dietary Sugar Tolerance in Drosophila. PLoS Genetics, 9(4), e1003438. https://doi.org/10.1371/journal.pgen.1003438

59. Garrido, D., Rubin, T., Poidevin, M., Maroni, B., Le Rouzic, A., Parvy, J. P., & Montagne, J. (2015). Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity. PLoS Genetics, 11(2), 1–26. https://doi.org/10.1371/journal.pgen.1004995

60. Rovenko, B. M., Kubrak, O. I., Gospodaryov, D. V., Perkhulyn, N. V., Yurkevych, I. S., Sanz, A., Lushchak, O. V., & Lushchak, V. I. (2015). High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. Journal of Insect Physiology, 79, 42–54. https://doi.org/10.1016/j.jinsphys.2015.05.007

61. Navrotskaya, V., Oxenkrug, G., Vorobyova, L., & Summergrad, P. (2016). Attenuation of high sucrose diet-induced insulin resistance in ABC transporter deficient white mutant of Drosophila melanogaster. Integrative Obesity and Diabetes, 2(2), 187–190. http://www.ncbi.nlm.nih.gov/pubmed/27375855

62. Rovenko, B. M., Perkhulyn, N. V., Gospodaryov, D. V., Sanz, A., Lushchak, O. V., & Lushchak, V. I. (2015). High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 180, 75–85. https://doi.org/10.1016/j.cbpa.2014.11.008

63. Na, J., Musselman, L. P., Pendse, J., Baranski, T. J., Bodmer, R., Ocorr, K., & Cagan, R. (2013). A Drosophila Model of High Sugar Diet-Induced Cardiomyopathy. PLoS Genetics, 9(1). https://doi.org/10.1371/journal.pgen.1003175

64. Song, J. K., Kannan, R., Merdes, G., Singh, J., Mlodzik, M., & Giniger, E. (2010). Disabled is a bona fide component of the Abl signaling network. Development, 137(21), 3719–3727. https://doi.org/10.1242/dev.050948

65. Yang, Q., Graham, T. E., Mody, N., Preitner, F., Peroni, O. D., Zabolotny, J. M., Kotani, K., Quadro, L., & Kahn, B. B. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436(7049), 356–362. https://doi.org/10.1038/nature03711

66. Graham, T. E., Yang, Q., Blüher, M., Hammarstedt, A., Ciaraldi, T. P., Henry, R. R., Wason, C. J., Oberbach, A., Jansson, P.-A., Smith, U., & Kahn, B. B. (2006). Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects. New England Journal of Medicine, 354(24), 2552–2563. https://doi.org/10.1056/nejmoa054862

67. Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., Leevers, S. J., & Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292(5514), 104–106. https://doi.org/10.1126/science.1057991